Constant pressure hybrid Monte Carlo simulations in GROMACS.
نویسندگان
چکیده
Adaptation and implementation of the Generalized Shadow Hybrid Monte Carlo (GSHMC) method for molecular simulation at constant pressure in the NPT ensemble are discussed. The resulting method, termed NPT-GSHMC, combines Andersen barostat with GSHMC to enable molecular simulations in the environment natural for biological applications, namely, at constant pressure and constant temperature. Generalized Hybrid Monte Carlo methods are designed to maintain constant temperature and volume and extending their functionality to preserving pressure is not trivial. The theoretical formulation of NPT-GSHMC was previously introduced. Our main contribution is the implementation of this methodology in the GROMACS molecular simulation package and the evaluation of properties of NPT-GSHMC, such as accuracy, performance, effectiveness for real physical systems in comparison with well-established molecular simulation techniques. Benchmarking tests are presented and the obtained preliminary results are promising. For the first time, the generalized hybrid Monte Carlo simulations at constant pressure are available within the popular open source molecular dynamics software package.
منابع مشابه
Enabling grand-canonical Monte Carlo: Extending the flexibility of GROMACS through the GromPy python interface module
We report on a python interface to the GROMACS molecular simulation package, GromPy (available at https://github.com/GromPy). This application programming interface (API) uses the ctypes python module that allows function calls to shared libraries, for example, written in C. To the best of our knowledge, this is the first reported interface to the GROMACS library that uses direct library calls....
متن کاملConstant Pressure Hybrid Molecular Dynamics−Monte Carlo Simulations
New hybrid Molecular Dynamics-Monte Carlo methods are proposed to increase the efficiency of constant-pressure simulations. Two variations of the isobaric Molecular Dynamics component of the algorithms are considered. In the first, we use the extended-ensemble method of Andersen [H. C. Andersen J. Chem. Phys. 72,2384 (1980)]. In the second, we arrive at a new constant-pressure Monte Carlo techn...
متن کاملHybrid Monte Carlo: theoretical results and practical implications
Introduced by Duane and his co-workers in 1987, the hybrid Monte Carlo (HMC) proved itself to be both an efficient sampling device and an effective realization of a stochastic thermostat. The method combines the best features of two well established simulation techniques, molecular dynamics and Monte Carlo. Among its drawbacks are inability to reproduce dynamical properties of a system, and lac...
متن کاملSimulation of Ionic Copolymers by Molecular Dynamics
Using GROMACS (a molecular dynamics package) we simulate ionic copolymers and compare the numerical results with those obtained by the lattice Monte Carlo simulations. While the results are qualitatively similar for both methods, the simulation times are significantly longer for the molecular dynamics simulations than those for the corresponding Monte Carlo runs.
متن کاملAdaptive multi-stage integrators for optimal energy conservation in molecular simulations
We introduce a new Adaptive Integration Approach (AIA) to be used in a wide range of molecular simulations. Given a simulation problem and a step size, the method automatically chooses the optimal scheme out of an available family of numerical integrators. Although we focus on two-stage splitting integrators, the idea may be used with more general families. In each instance, the system-specific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular modeling
دوره 20 12 شماره
صفحات -
تاریخ انتشار 2014